S. C,

Parallel Multi-Dimensional LSTM, With Application to Fast Biomedical Volumetric Image Segmentation

Marijn Stollenga*, Wonmin Byeon*, Marcus Liwicki, Juergen Schmidhuber

Abstract

Unlike CNNs, Multi-Dimensional Recurrent NNs (MD-RNNs) can perceive the entire spatio-temporal context of each pixel in a few sweeps through all pixels, especially when the RNN is a Long Short-Term Memory (LSTM). Despite these theoretical advantages, however, unlike CNNs, previous MD-LSTM variants were hard to parallelise on GPUs. Here we rearrange the traditional cuboid order of computations in MD-LSTM in pyramidal fashion. The resulting PyraMiD-LSTM is easy to parallelise, especially for 3D data such as stacks of brain slice images. PyraMiD-LSTM achieved best known pixel-wise brain image segmentation results on MRBrainS13 (and competitive results on EM-ISBI12).

Highlight

- Easy to parallelise on GPUs
- Retain all advantages of LSTMs -> integrate information over long distance where context plays a big role.
- Result in great performance on volumetric segmentation -> Best known pixel-level brain image segmentation results

Architecture

Layer Equations $i_t^d = \sigma(x_t^d * \theta_{xi}^d + h_{t-1}^d * \theta_{hi}^d + \theta_{i_{\text{bias}}}^d)$ $f_t^d = \sigma(x_t^d * \theta_{xf}^d + h_{t-1}^d * \theta_{hf}^d + \theta_{f_{\text{bias}}}^d)$ $\tilde{c}_t^d = \tanh(x_t^d * \theta_{x\tilde{c}}^d + h_{t-1}^d * \theta_{h\tilde{c}}^d + \theta_{\tilde{c}_{\text{bias}}}^d)$ $c_t^d = \tilde{c}_t^d \odot i_t^d + c_{t-1}^d \odot f_t^d$ $o_t^d = \sigma(x_t^d * \theta_{xo}^d + h_{t-1}^d * \theta_{ho}^d + \theta_{o_{\text{bias}}}^d)$ $h_t^d = o_t^d \odot \tanh(c_t^d)$ $h = \sum h^d$ $d \in \mathcal{D}$

Training

 $E = (y^* - y)^2$ $MSE \xleftarrow{\rho_{MSE}} \nabla^2_{\theta} E$ $G = \frac{\nabla_{\theta} E}{\sqrt{\text{MSE}} + \epsilon}$ $M \xleftarrow{\rho_M} G$

 $\theta = \theta - \lambda_{\rm lr} M$

• Change the traditional MD-LSTM structure

- -> All operations in PyraMiD-LSTM can be implemented using convolutions.
- -> Changes the context from block-form to a pyramidal shape
- -> More efficiently covers volume
- The convolutional nature changes several properties
- -> Number of computational steps between pixels becomes smaller
- -> Filters align with the way the data is recorded (parallel to the planes, not diagonal)

Membrane Segmentation

ISBI 2012 Challenges

• 512 x 512 pixels, 30 slices per volume • 1 volume for training, 1 volume for testing

Brain CT Scan Segmentation

ISBI 2015 Challenges

- 240 x 240 pixels, 48 slices per volume
- three high-field multi-sequences: T1-weighted scan (T1), T1-weighted inversion recovery scan (IR), and fluid-attenuated inversion recovery scan (FLAIR)
- 5 volumes for training, 15 volumes for testing

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Cloup			
Human	0.002	0.0053	0.001
Simple Thresholding	0.450	17.14	0.225
IDSIA $[2]$	0.050	0.420	0.061
DIVE	0.048	0.374	0.058
PyraMiD-LSTM	0.047	0.462	0.062
IDSIA-SCI	0.0189	0.617	0.103
DIVE-SCI	0.0178	0.307	0.058

References

[1] http://brainiac2.mit.edu/isbi_challenge/leaders-board} [2] D. C. Ciresan, et. al. (Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images(. In: NIPS. 2012.

T1-IR (Post)

T1 (Post)

PyraMiD-LSTM

Structure		GM			WM			CSF		
Metric	$\begin{vmatrix} DC \\ (\%) \end{vmatrix}$	MD (mm)	AVD (%)	$\begin{vmatrix} DC \\ (\%) \end{vmatrix}$	MD (mm)	AVD (%)	$\begin{array}{c c} DC \\ (\%) \end{array}$	MD (mm)	$\begin{array}{c} \text{AVD} \\ (\%) \end{array}$	Rank
BIGR2	84.65	1.88	6.14	88.42	2.36	6.02	78.31	3.19	22.8	6
KSOM GHMF	84.12	1.92	5.44	87.96	2.49	6.59	82.10	2.71	12.8	5
MNAB2	84.50	1.69	7.10	88.04	2.12	7.73	82.30	2.27	8.73	4
ISI-Neonatology	85.77	1.62	6.62	88.66	2.06	6.96	81.08	2.66	9.77	3
UNC-IDEA	84.36	1.62	7.04	88.69	2.06	6.46	82.81	2.35	10.5	2

PyraMiD-LSTM | 84.82 1.69 6.77 | 88.33 2.07 7.05 | 83.72 2.14 7.10 |