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ABSTRACT

Segmenting images into different regions based on textures
is a difficult task, which is usually approached using a com-
bination of texture classification and image segmentation al-
gorithms. The inherent variability of textured regions makes
this a difficult modeling task. This paper show that 2D LSTM
networks can solve the texture segmentation problem, com-
bining both texture classification and spatial modeling within
a single and trainable model. It directly outputs per-pixel tex-
ture classes and does not require a separate feature extraction
step. We first introduce a new blob-mosaics texture segmen-
tation dataset and its evaluation criteria, then evaluate our ap-
proach on the dataset and compare its performance with ex-
isting methods.

Index Terms— texture; texture segmentation; supervised
segmentation; 2D LSTM Recurrent Networks; blob-mosaics;
texture dataset; segmentation quality measurement

1. INTRODUCTION

Image segmentation is a fundamental task for many applica-
tions such as object recognition, medical imaging, and scene
analysis. An uniform region is defined by homogeneous ma-
terial or between discontinuities in depth. The texture has
major visual cues of the surface within and between the re-
gions. In order to segment the disjoint uniform regions based
on textures, the combination of texture classification and im-
age segmentation algorithm are used. However, it is difficult
to generalize the system in order to find a pattern without the
knowledge of domain since it is affected by various external
conditions, i.e., wide range of scale, illumination, rotation, as
well as internal noise of the texture.

Texture analysis for segmentation has been focused on
various texture descriptors to characterize a spatial repetition.
The common methods are concerned with texture modeling
by filters to enhance textural properties [1, 2, 3, 4]. Rather
simpler and very popular approaches that were traditionally
used for texture analysis are Tamura’s feature [5], Haral-
ick features [6] on Gray level co-occurrence matrix [7] and
Local Binary Pattern(LBP) [8]. The discriminative poten-
tial of these statistical metrics are high under limited condi-

tions. The extensions to multi-direction and multi-scale how-
ever need complex parameter tuning. Another popular sta-
tistical model to represent local characteristics is Gaussian
Markov Random Field (GMRF) [9, 10, 11]. It is more robust
under noise data than other approaches, but the locality fails
in covering diversity of textures since it only captures the de-
pendency of neighbors of each pixels. The common issues of
above approaches are the needs of hand-engineering process
and complex modeling to cover the variations of a texture.
In addition, it is hard to generalize the sub-window size with
unknown scale.

More recently, Kandaswamy [12] compared both the
well-established earlier texture algorithms with more re-
cent advancements under extreme conditions. In addition
to the various textural feature-based methods, texel and se-
mantic texton forests were used to improve the performance
in segmentation [13, 14]. Furthermore, machine learning
techniques for segmentation [15, 16, 17, 18] were proposed
instead of using manually selected filters. The multichannel
filters are generalized in an unified system which combine
feature representation and classification task. Particularly,
Convolutional Neural Networks (CNNs) utilize the convo-
lution mask as feature extractors instead of complex filter
bank. Although, the manual designed preprocessing step is
not required, a specific texture filter and multi-level classifier
is necessary to obtain the final segmented image.

In this paper, the standard single-layered 2D LSTM net-
works [19, 20] solve texture segmentation problem by per-
pixel texture classification. It does not require any manually
designed preprocessing or feature extraction step and outputs
segmented image without postprocessing. Preliminary suc-
cess of pixel-wise multi-dimensional LSTM recurrent neu-
ral network approach such as image labeling [19] and offline
handwriting recognition [21] indicate the ability to perform
pixel-level classification. However, both tasks are either un-
der the limited conditioned images or for the specific task.
Our network model is based on the idea of Graves’s [19], but
with a much simpler architecture on much complex and real-
world data. First, a new texture segmentation dataset using
blob mixture of natural texture images is proposed due to the
lack of diversity and difficulty of standard texture segmenta-
tion database. Thus, it more closely deals with the true image
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segmentation problem. The network precisely estimates the
texture regions and automatically adapt the different scale,
orientation, and shapes of texture regions in the image. We
show a simple and direct way of applying LSTM networks to
the problem of texture segmentation and compare the perfor-
mance using area-based segmentation quality measurement
on our blob-mosaics dataset.

The rest of the paper is organized as follows. Section 2 de-
scribes 2D LSTM network, new texture segmentation dataset,
and evaluation criteria for texture segmentation. Section 3
discusses experimental results, and concluding remarks are
given in Section 4.

2. THE TEXTURE SEGMENTATION USING 2D
LSTM NETWORKS

Network architecture: The network that we have applied for
texture segmentation includes three layers: One input layer,
one hidden layer, and one output layer. The networks receive
a two-dimensional (2-D) array as input. The RGB value of
pixels are fed directly to the hidden layer. The hidden layer
consists of four recurrently connected units with LSTM sub-
nets. In the subnet, memory cell is used as self-connection,
and input, forget, and output gates control the storage of data.
The recurrent connections access all directions of each pixel
(left to right, right to left, top to bottom, and bottom to top; 2n

hidden unit for n-dimensional data), and accumulates the in-
formation. Hence, the global information of the pixel’s all
surroundings contributes to the final decision. Finally, the
contextual information of all directions from the hidden layer
is sent to a single output layer. The size of output layer corre-
sponds to the number of classes and each output unit provides
a probability of each texture class per pixel.

Network training: To find an optimal network model of
the task, a different size of hidden unit is first trained on a
constant size of input pixels and determined empirically. The
size of input and output layer depend on the number of pixel
and the texture class respectively. The network is trained us-
ing 4000 random 100 × 100 samples with the fixed learning
rate and momentum. The optimal parameters for training in
our task will be discussed in Section 3.

Blob-mosaics database for texture segmentation: There
are a few public databases for texture segmentation [22, 23].
The existing texture segmentation database generated by
synthetic compositions obtained from the collection of poly-
gon mask has some limitations. Since the mask consists of
constant voronoi polygons and is used for all images, the
framework might learn this static shape of the region instead
of the actual signature of textures. Moreover, the boundary
of each texture region includes strong edges and/or corners
which affect the performance of the segmentation.

To avoid these issues, we propose a new database using
2D Gaussian blobs. The image is composed of random 2D
Gaussian blobs and each blob is filled with random material

(a) Blob-mosaics image generation

Fig. 1: Blob-mosaics texture segmentation database: The procedure of cre-
ating blob-mosaics image is as follow: 1) Gaussian filtering is applied on a
random image (100 × 100 pixels with normal distributed value [0-1]). 2)
Thresholding is performed for binarization (Median is selected as a thresh-
old value). Randomly shaped regions are generated in this step. 3) Texture
images from dataset KTH-TIPS2-a [24] is randomly assigned to the regions.
Note that, the dataset KTH-TIPS2-a itself includes material textures with var-
ious conditions (different scales, illumination directions, and poses). Thus,
the final blob-mosaics images include random shape, regions, as well as tex-
tures under various conditions.

textures from KTH-TIPS2-a [24]. To generate Blob-mosaics
images, Gaussian filtering (σ = 10.0) is first applied on a ran-
dom image (100 × 100 pixels with normal distributed value
[0,1]). The random Gaussian image is then binarized by me-
dian value. In this step, randomly shaped blob regions are
generated and ready for applying textures on the regions. Fi-
nally, randomly selected textures from KTH-TIPS2-a dataset
are assigned to each region. The database, KTH-TIPS2-a,
consists of texture images from eleven distinct materials un-
der varying illumination, pose and scale. Thus, final blob-
mosaics images include randomly shaped regions, as well as
textures under various conditions, so it provides diverse chal-
lenges for texture segmentation. The 4000 images are gen-
erated for training and the trained network is tested on 630
images. The figure 1 (a) illustrates the flowchart of blob-
mosaics image generation and examples of generated images
are shown below.

Segmentation quality measurement: The pixel-based
classification without any spatial information can especially
result in imprecise or noisy segmented area. To measure and
judge the robustness of these factors for the methods, seg-
mentation accuracy was computed by area-based quality mea-
surement proposed by Melendez [25]. Though the area-based
accuracy is simply measured by the ratio between the pre-
dicted area and the area of corresponding ground-truth, there
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is no direct way to map the predicted region onto the ground-
truth. To find the best possible overlap between them, we
first sort the predicted regions from large to small. It helps to
avoid the double assignment of a region. The maximum over-
lapped region between the predicted and ground-truth image
are matched and the overlapping ratio will be the area-quality
of segmentation. Hence, the most probable similarities be-
tween the ground-truth and predicted image are found and the
accuracy of the segmentation per image (AccI ) is computed
as follow:

AccI =
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3. EXPERIMENTS

In order to validate the proposed model, the different ap-
proaches commonly used for segmentation are compared
with our model; (1) patch-wise 6 Haralick features (gray) and
Naive Bayesian classifier (Gray-Haralick+Naive Bayes) [26],
(2) patch-wise 13 Haralick combined with color chroma
features (color) and Naive Bayesian classifier (Color(HSV)-
Haralick+Naive Bayes) [26, 27], and (3) the combination
of Gaussian Mixture Model, ExpectationMaximization, and
Hidden Markov Random Field (GMM-HMRF) [28]. All the
experiments of LSTM networks have been run by using the
RNNLIB library [29]

The first comparison method, 6 Haralick feature extrac-
tion (contrast, energy, homogeneity, correlation, dissimilarity,
and angular second moment in four directions, 0◦, 45◦, 90◦,
and 135◦) was performed on 9 × 9 patches and each pixel is
classified by a Naive Bayesian classifier. The second one was
13 Haralick features (all except the 14th feature) considered
with color (color-chroma) in HSV color space. For the last
comparison approach, GMM-HMRF, the number of region
(K = 3, 5) was initialized, and HMRF-EM was performed on
RGB images with 20 EM iterations and 20 MAP iterations.
For LSTM networks, a different size of hidden units (h = 10,
30, 50, 80) are tested. The input and output size are 3 (Red,
green, and blue pixel) and 11 (the number of texture class).
The learning rate of 1e-5 and a momentum of 0.9 are fixed
for all of our experiments.

The best area-based segmentation quality (averaged over
the 630 test samples) is compared in Table 1. The proposed
technique, LSTM network, led to superior performance with
the best K = 3 (for GMM-HMRF) and h = 30 (for LSTM net-
works). The performance with hidden size 30 and 50 are com-
parable (the difference was only about 0.4%). Segmentation

Table 1: Accuracy comparison of texture segmentation on texture blob-
mosaics images shown in Figure 1. 4000 random blob-mosaics images were
used for training and the trained network was tested on 630 images. To
compare the performance of segmentation, three different methods were se-
lected —(1) patch-wise classification based method with gray texture features
(Gray-Haralick+Naive Bayes), (2) patch-wise classification based method
with gray and color texture features (Color(HSV)-Haralick+Naive Bayes),
and (3) Gaussian mixture model+Expectationmaximization+Hidden Markov
Random Field (GMM-HMRF). Haralick feature is one of the common texture
features extracted from Grey level co-occurrence matrix (GLCM). The fea-
tures were extracted on the patches (9×9), then sent it to the Naive Bayesian
classifier. To consider the color information, color-chroma is considered with
Haralick features. Another popular methods are ExpectationMaximization
and Hidden Markov Random Field. The combination of Gaussian Mix-
ture Model, ExpectationMaximization, and Hidden Markov Random Field
(GMM-HMRF) is recently addressed in the literature [28]. (The best re-
sult on the table is with the initial region K=3). The accuracy is measured
by region based quality measurement. The details of segmentation quality
measurement was explained in Section 2. The proposed technique has ob-
tained the highest average accuracy for texture segmentation (The best score
is shown in bold).

method avg. acc.(%)

Gray-Haralick+Naive Bayes [26] 43.87

Color(HSV)-Haralick+Naive Bayes [26, 27] 49.34

GMM-HMRF [28] 71.20

LSTM networks 90.88

results in Figure 2 show the effectiveness of our method. Par-
ticularly, as shown in Figure 3, most of other approaches have
failed except LSTM networks under difficult blob-mosaics
images.

4. CONCLUSION

In this paper, we presented an entirely learning based texture
segmentation using 2D LSTM networks. The network has
a strong discrimination power with a single, per-pixel train-
able model that does not require a separate feature extraction
step. The network itself takes care of the pixel and its sur-
rounding neighborhood and does not require separate spatial
modeling. Thus, it can automatically learn texture patterns
for each pixel. The proposed technique has been compared
with the common and popular segmentation algorithms and
the results in terms of segmentation quality, robustness, and
simpleness have been favorable. An important indication of
this paper is that, 2D LSTM networks analyze texture infor-
mation as well as its location efficiently with single, directly
and automatically learnable model that are suitable for many
different tasks. For example, it can be easily extended to the
task of natural image segmentation if we know labels to super-
vise the network training. In the future, it is also highly inter-
esting to adapt to a wide range of situations such as outdoor
and/or indoor scene classification, segmentation, and object
localization.
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Fig. 2: Segmentation results by blob-mosaics images. From left to right
column are original image (Original), ground truth (GT), Haralick gray fea-
tures with Naive Bayesian classifier (Haralick1), Haralick color features with
Naive Bayesian classifier (Haralick2), and HMM-HMRF (The initial region
K = 3 (HMRF1) and 5 (HMRF2)), and LSTM networks (learning rate (lr) =
1e-5, hidden size (h) = 30 (LSTM1) and 50 (LSTM2)). The segmentation
results show the superior performance of the proposed method.
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