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Abstract—In this paper, we investigate the ability of the
Long short term memory (LSTM) recurrent neural network
architecture to perform texture classification on images. Existing
approaches to texture classification rely on manually designed
preprocessing steps or selected feature extractors. Since LSTM
networks are able to bridge over long time lags, we propose
applying them directly on the image, circumventing any hand-
crafted prepocessing. We investigate different approaches with
several input and output representations. In our experiments on
a number of widely used texture benchmarking tasks (KTH-TIPS,
OuTex, VisTexL, VisTexP, and NewbarkTex), we show that the
performance is comparable to, or better than, existing state-of-
the-art methods for texture classification.

Texture is a rich source of information about the contents
of images and identity of objects. However, reliable texture
recognition has been challenging because texture is a property
of image pixels that is both stochastic and non-local. Most
approaches to texture recognition manually design feature
extractors to cope with the non-locality, choosing specific ways
of integrating information about a region that is robust to
changes in phase. Examples of such an approach are Haralick’s
texture features [1].

Numerous approaches using texture feature extractors had
been investigated in 70-80’s including Haralick [2], Gabor
filters [3], wavelets [4] and grey level co-occurrence matrices
(GLCM) [2], [1]. The main drawbacks of these approaches
are the need to select the proper size of filter bank or
neighborhoods and that they are computationally expensive.
These methods were also applicable only on grayscale images.

More recently, Drimbarean and Whelan [5], Mäenpää and
Pietikäinen [6] and Iakovidis et al. [7] have incorporated color
data into texture descriptors. Their works have been focused
on the combination of color and texture either jointly or
separately. Different texture descriptors under various color
space were compared and different ways of combination were
comparatively evaluated. For instance, Discrete Cosine Trans-
form, Gabor filters, and co-occurrence matrices under separate
or combined color channel. Their experiments have shown
that joint color texture descriptors improve the performance.
However, it is unclear what is the best way and method to
describe a wide range of textures. It has so far been lacking
a general and comprehensive framework to classify textures.
It needs either static condition of texture or to be manually
designed to obtain an optimal solution.

Only a few methods, which unify the system between the
feature extraction and classification step (i.e. machine learning
based methods), were proposed to overcome this problem
mentioned above. First, in [8], multichannel filtering scheme
is combined with the neural network. More recently, Convolu-
tional neural network [9] and Random neural network [10]
were used for texture classification. Among all neural net-

works based approaches, Convolutional neural network has
been successfully applied for image processing or recognition
tasks [11], [12], [13]. However, it also requires appropriate size
of the kernel to recognize contextual patterns. Moreover, the
performance is often dependent upon the quality and constraint
conditioned data. Appropriate training data is also required
accordingly.

In this paper, we investigate 2D Long short term memory
(LSTM) recurrent neural network architecture to the problem
of texture classification [14], [15]. 2D LSTM involves the
recurrent connections which allow to access past and future
context along all dimensions. More specifically, each forward
(from left to right and from top to bottom) and backward
(from right to left and from bottom to top) pass provide the
surrounding context of its pixel in all directions. This property
makes 2D LSTM suitable to apply for the image analysis
tasks. 2D LSTM has so far applied to the problem of image
segmentation [14] and offline handwriting recognition [16]. In
the image segmentation task [14], each pixel was classified
using 2D LSTM under limited conditioned images. Another
application (offline handwriting recognition [16]) is the one of
successful application using multi-dimensional LSTM network
architecture. The task is combination of computer vision
with sequence labeling task. To deal with the problem, 2D
LSTM networks and connectionist temporal classification are
combined. A main characteristic of this LSTM network is
hierarchical structure by repeatedly composing 2D LSTM
layers. The great strength of LSTM networks is its ability to
learn salient features automatically from raw pixel data without
any specific preprocessing.

The most important factor for robust and efficient training
procedure of the neural network is the use of a large and
generalized training data [11]. Especially for visual tasks,
several ways of expanding training data were proposed in
literature, e.g., a subset of patch training [17] or transformation
invariance data generation [11]. For texture classification on
general domain datasets, we introduce a number of different
ways of applying LSTM networks. First, the input image is
redesigned by multi-patches with the variation of textures.
Compared to using a 2D image as a whole, multi-patch
based input has flexibility to represent the pixels to the wide
range of scaled and rotated textures which give remarkable
discriminative power. It is also great merit of generating a large
amount of training data and avoiding different parameter setup
for different tasks since the size of input patch is fixed. The
main purpose of this paper is to compare LSTM based texture
classification works with other texture based image classifi-
cation approaches. We successfully apply standard LSTM to
raw RGB value of pixels directly, without feature extraction
or preprocessing to the problem of texture classification.

The rest of the paper is organized as follows. Section I
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Fig. 1: 2D LSTM network architecture. First, raw RGB values at the pixel pi,j is sent to the network. 2D LSTM hidden layer includes four LSTM hidden units

(2(dim) = 22 = 4 hidden units) with two recurrent connections (R={(x[d(x)], y[d(y)]), d(x), d(y) ∈ [+1,−1]}). The recurrent connections access to each
dimension, and each hidden unit accumulates the information of each direction. Thus, it keep the all surrounding context and process it with the current pixel.
Four regions on each side in the input Ik indicate scanned areas of the pixel pi,j . The output of LSTM hidden layer for each pixel (Pr(L|pi,j) for the pixel
at (i, j) with the corresponding label L) is fed to the output collapse layer, then outputs the class probabilities for each image (Pr(L|Ik) for the kth image).

Fig. 2: Our approach: Performing texture classification with 2D LSTM networks. Input image is raw RGB value of pixels. At the training phase (red), the input
includes two types of representation: (1) original pixels and (2) scale and orientation invariant representation. The whole procedure of the system is as follow:
We first extract the randomly positioned patches with the (1) original pixels (2) randomly scaled and rotated pixels. It is then sent to the network. After the
training step, the original patches are tested on the network (blue). The final output of the networks is a single texture label of each patch. The performance has
been evaluated by both per-patch and per-image accuracy. The details of the procedure and evaluation criteria are explained in Section I and II. Better viewed
in color.

and II describe our approach and evaluation criteria in detail
and Section III presents the texture classification results. Fi-
nally, concluding remarks are given in Section IV.

I. SYSTEM DESCRIPTION

A. LSTM recurrent neural network architecture for 2D data

LSTM neural networks are a combination of recurrent neu-
ral nets (RNN) [18], [19], [20] and LSTM architectures [21].
LSTM memory blocks in the hidden layer include self-
connected memory cell(s) and three different gates, i.e. input,
forget and output gates. The self-connected memory cell is
functioned as a recurrent connection and controlled by forget
gate. This architecture helps to store the information until
it is not needed anymore. In the 2D case, each hidden unit
includes two recurrent connections with two forget gates. As
can be seen in Figure 1, these two recurrent connections
access to each axis, [d(x)], y[d(y)] where d(x) and d(y) are
the direction of the axis (−1 or +1). Thus, four hidden units
(2(dim) = 22 = 4 hidden units) take care of the information in
all directions (see the divided regions of input image for the

pixel pi, j in Figure 1). Note that each hidden unit includes
h LSTM memory block (h = hidden size). Our goal is to
classify the complete image with a single output. The network
first classifies each pixel independently, then the collapse layer
sums up the output of each pixel and softmax function is
applied for the final classification. The details of 2D LSTM
network architecture are illustrated in Figure 1.

B. 2D LSTM networks for texture classification

To apply 2D LSTM networks for texture classification, the
procedure is divided into four parts: input representation, input
layer, 2D LSTM hidden layer, and output layer. The complete
flow diagram of our approach is shown in Figure 2.

Input representation: The network receives inputs from
raw RGB value of pixels. The input can be a 2D image as
a whole or in multi-patches. The advantages of patch-wise
input are 1) the consistent size of the input is retained, 2)
it is transformable, i.e., variation of texture is easily gener-
ated, 3) The input is generated as much as is desired. Each
dataset in our experiment has different challenging problems
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for different experimental designs. Multi-patch based input
increases its generality. In addition, the datasets contain a huge
range of resolution images. In order to obtain the identical
model parameters, constant input dimension is required. For
the reason, the size of patch pixels used as an input in
all of our experiments is fixed to 64 × 64. Unlike popular
texture analysis methods, our approach does not need any
prior knowledge to extract features. However, the problem in
general is too complex and the model prediction is tough, in
order to generalize it, without specific preprocessing under
the limited number of training samples and unconstrained
conditioned data. To deal with it, scale and orientation invariant
representation is introduced. The procedure is as follows (The
illustration, see Figure 2). We first extract random sized patches
at random position of the image. Each patch is then rotated
at random angle and resized it to 64 × 64. It provides the
scaled-up or down and rotated patches. The range of scale
covers most of scales missed from original training samples.
By training with the scale and rotation invariant input, the
network model covers the wide range of scales (from the
close-up texture materials to the natural scene textures) and
all possible rotations. The original patched input is then tested
with the trained model. The effectiveness of scale and rotation
based input representation will be discussed in Section III.

For texture classification task, 2D array is sent directly into
the network and produces an output that indicates a single
texture class. For efficient computation of 2D LSTM, two key
features, i.e., input subsampling and output collapse, are used
at input and output layer of LSTM network.

Input layer: Input subsampling operation is not a regular
process in standard LSTM. It is a part of the hierarchical
structure of LSTM introduced in [16]. Received 2D input is
divided into the windows and send it to the LSTM layer. Each
window is presented as a single input, and each activation
includes the local features. It is collected in the network and
used as global features. All activations of whole input are
then contributed to the final classification. This idea is similar
to using windows to localize and obtain stable features from
common local feature extractors. It is very effective, especially
for 2D LSTM networks since 1) it localizes the contextual
information of the image, and 2) it has computational speedup;
It does not reduce an amount of data, but downscale the
activation array. Evidence of its power will be provided in
Section III.

LSTM hidden and output layer: The windows pass
through 2D LSTM hidden layer including four hidden units
which scan all surrounding neighborhoods of the current
position. Output layer eventually receives final activations from
LSTM hidden layer and all activations are then collapsed to
the output array with the size of the class.

II. OUTPUT INTEGRATION AND EVALUATION

Output integration: LSTM networks perform probabilis-
tic classification which provides the conditional probabilities
of the labels given the input: p (label | input). When multi-
patch based approach is applied, output is the probabilities
of classes for each patch. To determine the final class of an
image, the further integration process is required. Since we
have used random parts of an image, some patches have higher

distinctive patterns and some may contain noise or clutters.
For the reason, some smoothing effect is incorporated to find
the most probable label of the image. The probabilities of the
labels are first averaged, then maximized over these to find the
highest score:

argmax
label

1

no. patch

no. patch∑
j=1

pj (label | input),

Evaluation: The performance had been evaluated with per-
patch and per-image accuracy in order to compare the effec-
tiveness of patch-based input representation. The classification
accuracy for per-patch is computed as follow:

accuracyper-patch =
1

T

T∑
i=1

{
1 argmaxl pi (l |x)
0 otherwise

where x is input image patch, l is predicted texture label and
T is total number of patches. Furthermore, per-image accuracy
is measured using integrated score of all patches:

accuracyper-image =
1

N

N∑
i=1

{
1 argmaxl

1
n

∑n
j=1 pj (l |x)

0 otherwise

where n is the number of patches per image and N is the
number of image.

III. EXPERIMENTS

We evaluated our approach on five challenging texture
datasets. Each dataset includes various types of textures, differ-
ent size, and different number of training and testing samples.
The neural network approaches in general require different
type of experimental setup depending on the data condition.
The advantage of patch-wise scale and rotation invariant input
representation is that the parameter tuning is not necessary for
each dataset when the optimal network model is found.

The detail of the datasets is explained in Table I.

A. Datasets

The dataset KTH-TIPS includes various conditions, that is,
nine scales spanning two octaves, three different illumination
directions, and three different poses. Some materials have
very similar textures like cotton and linen or sponge and
brown bread which makes the database challenging. For the
comparison, we followed the evaluation setup proposed by
Zhang et al. [27].

The dataset OuTex contains 68 classes of various color
textures with 128× 128 pixels. Half of the images were used
in the training (680 images out of 1360 images) and remains
for testing. Several categories of images have similar color and
texture, so the discrimination only by its pixels is not easy.

The next datasets VisTexL and visTexP are both designed
for natural color textures under non static conditions. The same
scheme was used to generate the dataset. For VisTexL, 864
disjoint sub-images were generated from 54 texture images.
VisTexP includes 55 texture classes with 880 sub-images. For
both datasets, each image (size 512× 512) is split up into 16
sub-images (size 128×128). These sub-images are considered
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TABLE I: The summary of texture datasets used in our experiments. Each database has different challenging problems for different experimental designs. Textures
in each dataset are under different or non controlled conditions with higher or lower resolution. KTH-TIPS includes specific texture of materials under varying
illumination, pose, and scale. Other datasets are from the natural texture of the scene or the object. OuTex, VisTexL, and VisTexP contain a larger number of
textures with a small number of training images. In contrast, NewbarkTex is composed of six tree bark classes with larger number of training images. However,
the variation between the classes is not distinctive. All of the dataset can be found at the source link.

Image size # Texture
# Training images

# Test images Type of texture Source
per class

KTH-TIPS 200 × 200 10 40 410 material [22]

OuTex (OuTex-TC-00013) 128 × 128 68 10 680 natural texture [23]

VisTexL (Contrib-TC-00006) 128 × 128 54 8 432 natural texture [24]

VisTexP 128 × 128 55 8 440 natural texture [25]

NewbarkTex 64 × 64 6 136 816 natural texture [26]

as a same class. As for the Outex set, half of the images were
used in the training phase.

Recently, a new benchmark colour texture image test suite,
NewbarkTex from BarkTex dataset [28], [29], [30], [31] is
proposed. Six tree bark classes with 68 images per class
(128×128) are divided into 4 sub-images (size 64×64). Total
272 sub-images per classes (total 1,632 images) are built and
it is again divided by half for training and testing.

B. Experimental setup

All the experiments have been run by using the RNNLIB
library [32]. For the statistical evaluation [33], a preliminary
test is repeated five times with different parameters to find the
appropriate network architecture. The optimal parameters are
then applied to the datasets with randomly divided training
and testing samples. It is repeated over 50 times and reported
the average accuracy. All five datasets have been examined
directly on the raw RGB values of the pixels.

Input representation: As mentioned in Section I, a wide
range of scale and rotation are considered as input. To rescale
it, patches are randomly sampled between 50×50 and 80×80,
then resize it to 64×64. The scaled patches are then rotated at
angles of 0◦ - 360◦. Both scale and rotation are with 1 pixel or
1◦ level increment. Besides, the number of patches extracted
in an image also affect the performance since randomly rotated
and scaled patches increase the diversity. Very small and large
number of patches (10 and 200) have been examined for all
experiments to evaluate the influence of performance.

Input subsampling and LSTM networks: To find optimal
network model with proper size of input and its corresponding
window size, a preliminary test with the range of parameters
(the hidden size = {15, 25, 50, 75, 100}, the window size =
{no-subsampling (one pixel), 5×5, 10×10, 15×15, 20×20,
25×25} with the input pixels = {64×64, 100×100, 200×200})
has been carried out. If no input subsampling operation is used,
each pixel is processed. At the preliminary test, we found that
no proper training performance was actually achieved without
or the small size of the window when the size of the input
image is big (bigger than 2500 pixels; 50×50). The network is
started to be trained when the size of the window is bigger than
5× 5. When the network contains the small window size with
the large hidden unit, it is also not converged (no subsampling
or window size 5 × 5 when hidden size is bigger than 25).
This preliminary experiment has shown the influence of input
subsampling operation and relationship of input and hidden

size with the window size. At the end, the size of window 5×5
with 15 hidden units was set with the input pixels 64× 64 for
all of our experiments. The learning rate and momentum have
been fixed for all experiment to 1e-4 and 0.9 respectively.

C. Results and discussions

The best texture classification results using LSTM net-
works compared to other methods are summarized in Table II.
We tested five datasets under three different input type: (1) an
original 2D image, (2) multi-patches in an original 2D image,
(3) multi-patches with scale and rotation invariant represen-
tation. With the input type (1), KTH-TIPS and NewbarkTex
has already obtained the best accuracy among current feature
extraction based approaches (99.48% and 78.2% respectively)
and others are comparable (93.09% for OuTex, 89.55% for
VisTexL and 90.0% for VisTexP). With multi-patch based input
representation (input type (2) and (3)), it is clear that per-image
accuracy are much scattered than per-patch. (The difference
was about 3%). The number of patches per image have also an
important role in classification performance. The large number
of patches (200 in our experiment) per image outperform on
most of the dataset (around 2% higher for all datasets except
OuTex). The best results using LSTM networks compared with
different feature extraction based methods are summarized in
Table II. Overall, the best accuracy of our approach led to supe-
rior performance on most of benchmark datasets. Specifically,
200 patches per-image accuracy of KTH-TIPS dataset achieved
100% (1.5% higher) and NewbarkTex dataset achieved 78.2%
(2.3% higher). The Statistical significance is lower for the
dataset OuTex, VisTexL and VisTexP because of extremely
small number of training samples with a large number of
textures (only 10 images per class in OuTex (68 textures)
and 8 images per class in VisTexL (54 textures) and VisTexP
(55 textures). However, it still gives comparable performance.
The results show that the multi-patch based scale and rotation
invariant representation is very powerful to discriminate the
raw pixel level images with 2D LSTM networks.

IV. CONCLUSION

Many texture classification methods proposed in the lit-
erature rely on manually designed preprocessing steps or
feature extraction step. The main contribution of our work
is to introduce a new approach to solving the problem of
texture classification through LSTM recurrent neural network
architecture. The benefit of 2D LSTM networks is an ability to
make use of contextual information by itself, which is easily
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TABLE II: Correct classification rates (avg. accuracy, %) on five benchmark datasets of texture classification (no. test=50). In order to compare the performance
with other methods, all of our experiments have been following the same experimental setup. For each test, same training and test subset divided by provided
test suites of OuTex, VisTexL, and NewbarkTex is used. For other datasets, it is randomly divided into the same number of images (Half of them for training
and remains for testing). The three different representations of input were tested: 1) an original 2D image, 2) multi-patches in an original 2D image, 3) multi-
patches with scale and rotation invariant representation. In addition, the different number of patches was also compared. Overall, scale and rotation invariant
representation with 200 patches outperformed among others. The performance is compared to most recent or common methods of texture classification. Finally,
the best accuracy of our approach leads to superior performance on most of benchmark datasets. Note that the values in bold denote statistical signicance at
95% confidence among other methods, and underlined numbers indicate comparable results.

Dataset KTH-TIPS OuTex VisTexL VisTexP NewbarkTex

The number of test samples 610 680 432 440 816

Basic Image Features based on steerable filters (BIF) [34] 98.50 - - - -

Multiscale Local Binary Patterns (LBP) [35] 93.17 - - - -

Principal Curvatures with four scales (PC) [36] 97.52 - - - -

Rotation invariant multi-scale features (MLEP) [35] 96.41 - - - -

Semi-joint Texton descriptor (STD) [37] - 90.32 99.25 98.89 -

Homogeneous texture (HTD) + color structure (CSD) [38], [37] - 86.71 99.56 98.53 -

Multispectral co-occurrence (MM) [39] - 94.1 - 97.9 -

Haralick from reduced size chromatic co-occurrence (RSCCMs) [40] - - - - 75.9

LSTM networks (the proposed approach) 100 94.70 99.09 99.07 78.2

and directly applicable without feature extraction or manual
preprocessing steps. Furthermore, the architecture is very sim-
ple; one hidden layer and a small number of hidden neurons
are taken, unlike other complex neural network structures. We
also investigated various ways of applying LSTM networks
to the texture classification and achieved promising results on
a number of widely used texture classification benchmarking
datasets. Particularly, multi-patch based scale and orientation
invariant input representation is very robust to extreme texture
conditions and has an advantage of avoiding parameter tuning
for different tasks. Future direction will be to use a variant
of our approach to texture segmentation task. The success in
texture classification shows the potential of a such application.
We also aim at extending our approach to the real world scenes,
since natural scenes in general include an amount of textures.
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