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Abstract: Due to the lack of non-zero gradients around the structures in the less textured scenes, current local feature
can hardly be applied in less textured object detection. To deal with this issue, two types of local structures,
namely, corner and closed region are proposed in this paper. They are based on purely object contours, which
are cleaner and easier to obtain in less textured scenes. Compared to existing detectors, they adapt to object
local structures better. In addition, these new type of local structures also bring the advantage that allows us to
have different level of abstraction on the object structures. Its effectiveness has been evaluated under various
image transformations and has been demonstrated with object detection in X-ray images.

1 INTRODUCTION

Image local features (also known as keypoints)
have been widely explored in the last decades due
to its unique advantages over global features. They
have been successfully applied in wide range of ap-
plications and systems, such as wide baseline match-
ing (Matas et al., 2002), object retrieval and detec-
tion (Sivic and Zisserman, 2003; Lowe, 2004), and
near-duplicate image/video detection (Sivic and Zis-
serman, 2003; Douze et al., 2010). Keypoints have
been defined as the local extremas of certain mea-
surement, which ensures their saliency and robust-
ness to various image transformations. In general,
one keypoint feature only represents one local struc-
ture in an image. It therefore has high chance of
coinciding with the canonical structure of an object,
which makes it possible to recognize objects by as-
sembling their partial views. Due to the introduc-
tion of keypoint, this principle has been successfully
adopted in different object detection tasks on the tex-
tured images. Many successes have been reported
in different contexts about keypoint features, unfor-
tunately most of the research about keypoint feature
detection and application has been concentrating on
the texture images. Although the exploration on key-
point feature can be partly attributed to the original
search for corners in the less textured objects (Smith
and Brady, 1995), few light has been truly shed on
how to identify and make use of keypoint features in
the less textured contexts. In contrast to few research
on the detection of less textured object, our world
is actually rich in less textured visual objects. Fig-
ure 1(a)-(c) show three typical examples of less tex-
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Figure 1: Typical examples of less textured objects with
Harris-Affine points dislpayed.

tured objects. These types of objects are frequently
observed in different circumstances. The importance
of identifying these objects has been witnessed in re-
cent works (Hinterstoisser et al., 2012; Hinterstoisser
et al., 2009; Kim et al., 2007; Mery, 2011). However,
the existing detectors are unable to identify the local
structures correctly. For instance, as shown in Fig-
ure 1(a)-(c), although the Harris-Affine points in Fig-
ure 1(a)-(c) are roughly located in the object corners,
the characteristic scales estimated for the keypoints
are mostly wrong. This is mainly because there are
insufficient gradients around the corner. As a conse-
quence, meaningful local structures are no longer de-
sirable in these cases. Compared to object detection in
the texture images, due to the lack of suitable features,
effective solution is still slow to occur in less textured
cases. Observing that it is hard to recover the correct
local structures on the less textured objects with exist-
ing saliency structure detectors, we propose to iden-
tify them based purely on edge image. By returning
back to original way for corner detection, we basi-
cally identify two types of local structures, namely



corners (also termed as junctions in some cases) and
closed regions (visually closed region or blob struc-
tures). We observe that these two types of structure
already cover most of identifiable local structures of
an object. Compared to existing ways on achieving
scale and affine invariance (Mikolajczyk and Schmid,
2004), our approach achieves scale and affine in-
variances without complicated scale and affine esti-
mation (Mikolajczyk and Schmid, 2004) or simula-
tion (Morel and Yu, 2009). In addition, with the de-
tected structure, we are able to distinguish one com-
pact local patch as background and foreground side.
Meanwhile, it also allows matching either between
compact local patches or pure object contours. The
remainder of this paper is organized as follows. The
related work about keypoint detection and objects de-
tection in less textured images has been reviewed in
Section 2. Section 3 details the proposed local struc-
ture extraction method in less textured scene. Section
4 introduces our way of feature representation for less
textured local patches. Section 5 presents the evalua-
tion of proposed keypoint features on standard bench-
mark in comparison to representative keypoint detec-
tors. In addition, suspicious object detection in X-ray
images is demonstrated. Section 7 concludes our find-
ings.

2 Related Work

Corners have been recognized as the most salient
and robust structures latent in a visual object. Ex-
periments have shown that removing the corners from
images impedes human recognition, while removing
most of the straight edge information does not (Tuyte-
laars and Mikolajczyk, 2008). The general procedure
of corner detection involves the localization of corner
and the search for the underlying structure around the
corner. The latter makes it possible for feature rep-
resentation and afterwards matching among corners.
For edge based methods (Smith and Brady, 1995;
Mokhtarian et al., 1998; He and Yung, 2008), most
of the research (Smith and Brady, 1995; Mokhtarian
et al., 1998; He and Yung, 2008) are limited to localiz-
ing the corners, while further exploration on how the
complete corner structure can be revealed and utilized
are left untouched. In contrast, most of the saliency
function based approaches (Mikolajczyk and Schmid,
2004; Tuytelaars and Mikolajczyk, 2008) are able to
both localize and scale the corner structures. How-
ever, these approaches are not suitable for less tex-
tured scenes. As we know, in the saliency function
based approaches, the detection of canonical struc-
ture of a corner is achieved by automatic scale selec-

tion (Linderberg, 1998), usually either trace or deter-
minant on Hessian matrix is adopted to select char-
acteristic scale in the scale space. In texture images,
the detected scales are not expected to perfectly cover
corners (Tuytelaars and Mikolajczyk, 2008). Once
the structure is functionally salient, the texture field
around the structure helps to distinguish it out. How-
ever, due to the lack of textures, this doesn’t hold for
less textured scenes. Figure 2(a) and (b) show a cor-
ner structure and its saliency functions in scale space
respectively. As shown in Figure 2(b), due to the lack
of significant gradient levels, function peaks corre-
spond to visually insignificant scales. While the ex-
pected scale (ellipse in dashed line in Figure 2(a)) has
been missed. As a result, Trace(H) and Det(H) either
produce no meaningful scale (e.g., Figure 1(b) and
(c)) or detect multiple characteristic scales around one
corner (e.g., Figure 1(c)). Besides the risk of missing
object true structure in the less textured image, the
performance of corner detector can also be affected by
complex background in which the object lies. In gen-
eral, corners are often found near object boundaries as
this is where the intensity change usually occurs. The
region extraction process is often based on measure-
ments on non-planar structures, e.g., including back-
ground or another facet of the object (Tuytelaars and
Mikolajczyk, 2008). In these cases, the robustness to
background changes will be affected for most of exist-
ing detectors (Tuytelaars and Mikolajczyk, 2008). As
noticed in Figure 1, apart from less textured real ob-
jects, X-ray images are another major image source,
in which texture can hardly be observed. Object de-
tection in X-ray has been left largely unexplored al-
though it could be pretty helpful in automatically dis-
covering suspicious objects in airports, customs and
etc. Compared to object detection in the less textured
natural image, transparency phenomenon makes the
task even tougher. Due to the inherent difficulties,
few efforts have been made on automatic object de-
tection in X-ray images. Available work (Mery, 2011)
focuses on how to integrate multiple views of X-ray
scanning. However, this work is limited to localizing
instead of recognizing objects.

3 Edge based Detection of Local
Structures on Less Textured
Object

3.1 Pre-processing

The procedure of keypoint extraction begins with
the edge detection. Canny edge detection algo-
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Figure 2: Corner structure and its scale space saliency
curves defined on Hessian matrix (H). The charactertistic
scales are found at where Trace(H) and Det(H) attain their
local maxima respectively. The expected scale is illustrated
with dashed ellipse in (a).

rithm (John, 1986) is first applied on the input im-
age. The choice of Canny edge detection is mainly
due to its simplicity and stability in different situa-
tions. In order to ensure the detected edge is ex-
actly one pixel wide, the edge detection results are
further processed with thinning algorithm proposed
in (Zhang and Wang, 1996). Followed by the thin-
ning, the bitmap of edges has been parsed into graph
representation. In the graph representation, we main-
tain the original connectivity and sequential orders of
the pixels along the edges. After this pre-processing,
each disconnected contour is ready and will be treated
independently for local structure detection in the later
stages. Notice that, this pre-processing has no prefer-
ence on edge detection algorithms. However, good
edge detection algorithm will necessarily boost the
overall performance.

3.2 Corner Detection

There are several ways available for corner detection
along object contours (Mokhtarian et al., 1998; Nak-
agawa and Rosenfeld, 1979; Liu et al., 2009; ?). Ap-
proaches presented in these works, although differ-
ent in details, most of them define corners on the lo-
cal maximum of the edge curvature. After a com-
parative study over the effectiveness of different def-
initions about the curvature, we adopt approach pre-
sented in (Nakagawa and Rosenfeld, 1979). Accord-
ing to (Nakagawa and Rosenfeld, 1979), the curvature
in edge pixel P(x,y) can be defined as

θ = |arctan(
y2 − y1

x2 − x1
)|, (1)

where Pb(x1,y1) and Pf (x2,y2) are points W0 pixels
before and after the current pixel P respectively along
the edge. W0 is empirically set to 7 and kept the same
across all our experiments in the paper. With the help
of Eqn. 1, curvature of each pixel along the edge can

be sequentially calculated and kept in order. To al-
leviate the effect of noises, this curvature sequence
has been undergone several runs of linear smoothing.
Followed by the smoothing, the corner detection starts
from either ends of the edge segment. The edge points
are recognized as corners when they attain the local
maximum on Eqn. 1. Since each disconnected edge is
treated separately, process above is repeated on each
edge curve.

As observed in Figure 3(b), the detected corner
point (e.g., c1, c2 or c3) carries very limited informa-
tion if we view them alone. As a matter of fact, it
is the curved structure centering on the corner (e.g.,
curve ĉ1c2 and ĉ2c3 in Figure 3(b)) distinguishes the
corner (e.g., c2 in Figure 3) out. Based on this obser-
vation, we integrate two neighboring segments with
the corner as a uniform local structure. This time
the corners we discovered are the local curved struc-
tures. For each corner structure, the concave side can
be approximated by an inscribed triangle which con-
nects the three consecutive corners (e.g., c1, c2 and c3
in Figure 3(b)). Furthermore, the affine region over
this local structure can be approximated by a circum-
scribed ellipse of this triangle. The ellipse is known
as Steiner ellipse (Kimberling and Hofstadter, 1998)
which is defined in Eqn. 2.

a(x−x0)
2+b(x−x0) ·(y−y0)+c(y−y0)

2 = 1, (2)

where

x0 =
x1 + x2 + x3

3
, y0 =

y1 + y2 + y3

3
Additionally, we define matrix B as

B=

 (x1 − x0)
2 (x1 − x0) · (y1 − y0) (y1 − y0)

2

(x2 − x0)
2 (x2 − x0) · (y2 − y0) (y2 − y0)

2

(x3 − x0)
2 (x3 − x0) · (y3 − y0) (y3 − y0)

2

 ,

(3)
and Bi (i = 1,2,3), which shares all the elements
with B except the ith column has been replaced by
(1,1,1)T . The parameters in Eqn. 2: a, b and c can be
determined by Eqn. 4.

a =
Det(B1)

Det(B)
,b =

Det(B2)

Det(B)
,c =

Det(B3)

Det(B)
, (4)

where Det(·) is the determinant of a matrix. Up-
to-now, the corner structure has been approximated
by an affine region. Similar to affine estimation ap-
proach presented in (Mikolajczyk and Schmid, 2004),
the affine invariance now becomes achievable if we
assume this affine region has been transformed from
a structure norm by linear transformation based on
Eqn. 5.

T =

 a b/2 0
b/2 c 0
0 0 1

 (5)



(a) X-ray imaging on a
handgun

(b) Detect corners on an
edge from (a)

Figure 3: Corners detection on Canny edge of input image.
Figure 3 demonstrates the process of corner detection
and affine region approximation. Especially, the de-
tected local structure that has been normalized by the
T−1 is shown in bottom right of Figure 3(b).

3.3 Closed Region Detection

Although in the edge image, salient structures of an
object can be largely decomposed into corners, there
is still another type of local structure we may fail to
cover. For example, no corner will be detected on a
circle since the curvatures along the edge remain con-
stant. In other cases, corners can be detected while
we still miss the local structure as a whole, since cor-
ners are overheadly decomposed in this case. Intu-
itively the more complicate the local structure is, the
more distinguishable it is. As a result, detecting this
type of local structure which has been missed in cor-
ner detection is also expected. Observing that these
local structures appear as closed curve with arbitrary
shapes in the edge image. The task of detecting these
local structures is to identify the closed curves among
edges. However, as more frequently observed in prac-
tice, due to the noises and inaccuracy of edge detec-
tion, these curves may be broken at some points. For
this reason, on one hand, one cannot simply parse
through pixels along each edge and check whether
one end of the edge segment is exactly connected to
another. On the other hand, if the expected closed
structure has been broken into several edge segments,
the visual meaning of the structure can be interpreted
in various ways. To precisely understand and identify
these types of structure requires either the interven-
tion of human being or training, which is out of the
scope of this paper. As a result, our algorithm only
considers edge segment open on one side. In the case
that the expected closed segment has been broken in
several ways, we believe they can still be roughly ap-
proximated by corners individually. The problem of
detecting closed (or semi-closed) curve region can be
generalized into a traditional shortest path searching
between any two end points in the connected edge
segments. The end point refers to either end point
of one segment or a junction at which more than one
segments join with each other. They are treated as ver-
tex in a graph representation. Similarly, the segment

(a) Canny edge
from Figure 1(b)

(b) Corners found
on (a)

(c) Closed Re-
gions found on
(a)

Figure 4: Corners and closed regions detected from input
edge image.

which connects two end points is treated as an edge
in between two vertices. The edge weight is conse-
quently assigned to the length of the segment. Short-
est path searching is therefore exhaustively under-
taken for all the end point pairs. Since we have lim-
ited number of vertices in the graph, the detection can
be fulfilled efficiently. As noticed before, the closed
region R would be in an arbitrary shape and orienta-
tion. As a result, direct matching of one closed region
with its linearly transformed one involves probing the
whole transformation space (anisotropic scaling and
rotation), which is in prohibitively high cost. To han-
dle this issue, similar to corner detection, we super-
impose an approximated affine region on the detected
closed (or nearly closed) structure. This is done by
collecting all the points which fall inside the region.
Such that the covariance matrix in Eqn. 6 defined on
these points regularizes an ellipse centering on the re-
gion center µ(R).

Σ(R) =
1
|R| ∑

x∈R
(x−µ)(x−µ)T , (6)

where

µ(R) =
1
|R| ∑

x∈R
x. (7)

Similar to corner structure, with the help of the
affine adaptation, the detected closed region can be
normalized. Visually relevant regions which have
been affinely transformed become comparable once
being normalized with their Σ−1(R)s respectively.
Comments As demonstrated in Figure 4, corners and
closed region capture different local structures, com-
paring with Figure 1(b), these two types of corner
adapt to the object structures better. Comparing with
traditional detectors, both corners and closed regions
allow different levels of abstraction on the local struc-
ture. In practice, when we are asked to judge whether
two portraits are from the same person, we compare
whether the photos are identical on pixel level. While
if we are asked to tell whether goose and duck are
birds, only shape matters according to our vision. Un-
fortunately, far less powerful than human vision, de-
scriptor cannot achieve different levels of abstraction



within one feature, different types of descriptor are
thus required in different applications. We are now
enabled with three choices. Firstly, as other keypoint
detection approaches, we can take the whole local
patch covered by the ellipse. Alternatively, we can
also divide the local patch into background and fore-
ground. Each detected structure is acted as dividing
boundary. Further more, object or its parts can be
also represented with the contours solely (as shown
in Figure 3(b)).

3.4 Detect Local Structure in Multiple
Scales

Traditionally, the purpose of detecting keypoints in
multiple scales is to select a proper characteristic
scale on which the saliency function attains local ex-
trema. Similar local structures will coincide on simi-
lar characteristic scales, such that the local structures
become comparable to each other. Thus, scale invari-
ance is achieved. In our case, both the corner and
closed region maintain the same shape when under
arbitrary isotropic scaling. Once normalizing the lo-
cal structure into fixed-size patch (e.g., 41 × 41 in
SIFT (Lowe, 2004)), scale invariance is achievable.
However, according to scale space theory (Linder-
berg, 1998), the purpose of detecting keypoints in
multiple scales in its nature is to simulate the vision
effect of viewing objects from different distances. In
our case, object contour varies when it has been ob-
served from different distances. Edge detection un-
der different scales may generate different object con-
tours and this in turn results in different local struc-
tures. As a consequence, detecting corners and closed
region in multiple scales could help us to identify dif-
ferent local structures as much as possible. More im-
portantly, if a group of local structures are repeatedly
observed that are located in the same contour, the lay-
out of object parts can be captured. As a result, de-
tecting local structures in multiple scale also helps us
to relate local stuctures according to object layout. In
the implementation, the scale space is simulated by
varying σk increasingly (σk = k ·σ0,k = 1,2, ...) while
the ‘low’ and ‘high’ thresholds are fixed to 0.15 and
0.75 respectively. To ensure the stableness of detected
structures, only structures appear in at least two con-
secutive scales are kept. In addition, similar to (Lowe,
2004), it is no need to keep the image in its original
size when σk is considerably high. The scale space is
actually simulated by three octaves. In each octave,
four scales with increasing σk are generated.

(a) Corners (b) Closed Regions
Figure 5: Local structures detected (6 scales and 3 octaves)
on the first image of Graffiti sequence.

4 Experiment

4.1 Experiment-I: Performance
Evaluation in Objects rich in
textures

Our first experiment investigates the robustness of
the proposed local feature against different transfor-
mations. In particular, in order to have a clear pic-
ture about its suitability in different contexts, the ex-
periments are conducted on both textured and struc-
tured (less textured) images. Similar to (Mikola-
jczyk et al., 2005), we investigate the repeatability
score of the proposed detector (denoted as ‘corner’)
in comparison to popular detectors which achieve
scale and affine invariance. They are namely Harris-
Affine (Mikolajczyk and Schmid, 2004) based on
saliency function, IBR (Tuytelaars and Gool, 1999)
and EBR (Turina et al., 2001) which are based on
image edges, and Salient region (Kadir et al., 2004)
that is based on image intensity levels. The follow-
ing experiment is conducted based on the image se-
quences and testing software provided by K. Mikola-
jczyk (Mikolajczyk and Schmid, 2005). The transfor-
mations incorporated in these image sequences range
from viewpoint changes, scaling and rotation to dif-
ferent levels of blur. In each transformation type, de-
tectors are tested with both structured and textured
scenes. Detected corners and closed regions on ‘Graf-
fitti’ image are shown in Figure 5. For the struc-
tures extracted by other detectors (Harris-Affine, IBR,
EBR and Salient region), please refer to (Mikolajczyk
et al., 2005). As shown in Figure 6, Harris-Affine
overall outperforms other detectors, while Salient re-
gion are ineffective in most of the cases. Com-
pared to the performances in structured scenes, all
edge based approaches (corner, IBR and EBR) suf-
fer considerable performance drops under the scenes
that are full of textures. The instability of these ap-
proaches is mainly due to the low reliableness of edge
detection in textured scene. However, if we con-
sider these structured scenes only, the proposed ap-
proach demonstrates more stable performances than
others across all transformations we considered so far.



(a) Viewpoint change
for structured: Graffitti
sequences

(b) Viewpoint change
for textured scene: Wall
sequences

(c) Scale for the struc-
tured scene: Boat se-
quences

(d) Scale for the tex-
tured scene: Bark se-
quences

(e) Blur for the struc-
tured scene: Bikes se-
quences

(f) Blur for the textured
scene: Trees sequences

Figure 6: Repeatability of Local structures in comparison to
popular keypoint detectors under different transformations.

This implies our approach is rather suitable on struc-
tured (less textured scenes) than the textured cases.
Although Harris-Affine demonstrates stable perfor-
mance in terms of repeatability, due to the reason ex-
plained in Section 2, it is not really promising for less
textured scene, which will be verified in our second
experiment.

4.2 Experiment-II: Object Detection in
X-ray image

In this experiment, we demonstrate the effectiveness
of proposed method with object detection task in X-
ray images. The X-ray images are recorded on a dual-
energy X-ray machine, which provides 4 views (one
from top, one from side and two views at some an-
gle) for each baggage. In the experiment, we match
suspicious object template to image of scanned bag-
gages that are mixed with different materials such as
clothes, shoes, bottles, mobile phones. The perfor-
mance of proposed local structures has been com-
pared with Harris-Affine. Both the normalized curve
structures and Harris-Affine patches are represented

(a) Harris-
Affine+SIFT

(b) Corner+SIFT

(c) Harris-
Affine+SIFT

(d) Corner+SIFT

Figure 7: Point-to-point matching for Harris-Affine points
and local structures. Correctly matched structures in (b) and
(d) are highlighted with ellipses.

with SIFT. In the matching with ‘corners’, corners
are put into one group if they are located in the same
contour. As a result, object layouts information are
considered. It restricts matching to take place be-
tween groups thus avoids potential false matches. In
contrast, it is impossible to impose such kind of lay-
out constraint for local features such as Harris-Affine
points. Figure 7 shows the point-to-point matching re-
sults between object template and scanned baggages.
As seen in the figure, without further geometric ver-
ification, our proposed feature produces more num-
ber of coherent matches. While Harris-Affine feature
suffer from either indistinctive local structures (Fig-
ure 7(a)) or background noises (Figure 7(c)).

5 Conclusion

We have presented our approach on extracting
salient local structures, namely corners and closed re-
gions, from the less textured scenes. As illustrated,
they are able to adapt to the local object structures
well and demonstrate stable performances in less tex-



tured scenes. Specifically, the detected local structure
has been applied in suspicious object detection in X-
ray images. Encouraging results are also achieved.
Moreover, as they are derived from object contours,
these types of structures also offer the flexibility of
allowing different levels of abstraction on the descrip-
tors. To alleviate the instability of image contour de-
tection and apply this feature extraction on other ob-
ject types are the potential directions to explore in the
future.
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