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Abstract. The goal of our paper is to learn the association and the
semantic grounding of two sensory input signals that represent the same
semantic concept. The input signals can be or cannot be the same modal-
ity. This task is inspired by infants learning. We propose a novel frame-
work that has two symbolic Multilayer Perceptron (MLP) in parallel.
Furthermore, both networks learn to ground semantic concepts and the
same coding scheme for all semantic concepts in both networks. In addi-
tion, the training rule follows EM-approach. In contrast, the traditional
setup of association task pre-defined the coding scheme before training.
We have tested our model in two cases: mono- and multi-modal. Our
model achieves similar accuracy association to MLPs with pre-defined
coding schemes.
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1 Introduction

The relation between the real world via sensory input and abstract concepts
helps humans to develop language. More formally, Harnad [5] investigated the
process of coupling high level concepts and multimodal sensory signals. He called
this process the Symbol Grounding Problem.

All modalities (visual, audio, and haptic) are important for language acqui-
sition by infants. Cognitive researchers found that nouns are the first acquired
words by infants [1]. In more detail, nouns correspond to visible elements, such
as dog, cat, etc. In contrast, infants acquire vocabulary slower if one of their
sensory input fails i.e. deafness, blindness [1, 17]. Also, Neuroscience researchers
discovered different patterns in infants’ brain related to multimodal signals and
abstract concepts [2]. The patterns showed different behavior depending on the
existence or absence of a semantic relation between visual and audio signals.
This finding shows a relation between both modalities.

Previous work has been inspired by the Symbol Grounding Problem. One of
the first model was proposed by Plunket et al. [13]. The authors suggested a
feed-forward network for associating a visual stimuli and a label. Since then,
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Fig. 1. Components of our learning problem. The coding scheme is unknown in this
work and is learned during training.

more complex scenarios have been proposed. Yu and Hallard [18] presented a
multimodal model for grounding spoken languages using Hidden Markov Models.
Nakamura et al. [9] developed a model that ground the word meanings in a
multimodal scenario based on Latent Dirichlet Allocation.

In this paper, we are interested in a different setup of the Symbol Grounding
Problem for two sensory input signals. Moreover, abstract concepts are repre-
sented by the sensory input, which can or cannot be of the same modality.
Usually, each abstract concept is represented by a pre-defined coding scheme,
which is used for training classifiers. Figure 1 shows an example to explain the
difference between the traditional setup and this work for the association prob-
lem of two sensory input. This problem setup was introduced by Raue et al. [15],
who only evaluated visual sequences, which was represented by text lines in an
OCR case. Our contributions in this paper are

– We define a symbolic Multilayer Perceptron (MLP), which is trained without
specifying a coding scheme. In this case, an EM-training algorithm is used
for learning simultaneously the classification and the coding scheme during
training. Hence, the abstract concepts are grounded to the input signals
during training (Section 2).

– We propose (mono- and multi-modal) associations via symbol grounding,
where two parallel symbolic MLPs learn to agree on the same coding scheme.
As a result, the unknown agreements is learned using the information of one
network as target of the other network. Moreover, the association is gradient
based and can be extended to deeper architectures (Section 3).

– The Association Accuracy of the presented model reaches similar results
to MLP training with a pre-defined coding scheme in two scenarios: mono-
modal and multi-modal (Sections 4 and 5).

2 Symbolic Multilayer Perceptron

In this paper, a new training rule for Multilayer Perceptron (MLP) is introduced.
For explanation purposes, we define a MLP with one hidden layer, where x, y,
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and z are vectors that represent the input, hidden, and output layers, respec-
tively. In addition, we define a set of weighted concepts γc where c ∈ {1, . . . , C}.
Each weighted concept learns the relation between the semantic concept and the
output layer. In this case, the output layer is used as a symbolic feature at which
the size of vectors z and γc is the same. The cost function matches the output
vectors z1, . . . , zm in a mini-batch of size m with a uniform distribution. The
proposed learning rule follows an Expectation Maximization approach [4].

2.1 Training

The E-step finds suitable candidates for the coding scheme given the network
outputs and the weighted concepts. Initially, the weighted concepts are set to 1.0.
First, we define an approximation vector ẑc for each semantic concept c. It is
defined as follows

ẑc =
1

m

m∑
i=1

f(zi,γc), (1)

where zi is the output vectors, γc is a weighted concept vector c, m is the
size of the mini-batch, and the function f is the element-wise power operator
between vectors zi and γc. Equation 1 provides an approximation of all semantic
concepts. Second, all approximation vectors ẑc are concatenated in order to
obtain the array Γ

Γ = g

([
ẑ1, . . . , ẑC

])
, (2)

where function g represents a row-column elimination procedure. In other words,
all elements in the i-th row and j-th column of the input array are set to 0 (except
at position (i,j), which are set to 1). This process is iteratively performed c times.
As a result, Γ is a set of one-hot vectors and represents a one-to-one relation
between semantic concepts and symbolic features. Consequently, Γ is an array
where the columns encode the information about semantic concepts, while the
rows represent the different symbolic features. To map any given symbolic feature
to a semantic concept, it now suffices to look up Γ .

The M-Step updates the weighted concepts given the current coding scheme.
To that effect, we define the following loss function:

cost(γc) =

(
ẑc −

1

|C|
Γc

)2

, (3)

where Γc denotes the c-th column vector of Γ . Furthermore, we assume a uniform
distribution among all elements in c. Thus, we normalize Γc by the number of
semantic concepts c. Next, each weighted concept is updated using gradient
descent

γc = γc − α ∗ ∇cost(γc), (4)

where ∇cost(γc) is the derivative w.r.t. γc and α is the learning rate. In addition,
this step not only learns the coding scheme but also provides information for
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Fig. 2. Overview for the parallel symbolic MLPs. Parallel training sets are forwarded
to each MLP. The EM-training rule learns to agree on the same coding scheme for
both networks, where the coding schemes are unknown before training.

updating the weights in the symbolic MLP. The current coding scheme provides
the target vectors for propagating backward. In this case, the target vectors for
the semantic concept c is the column vector Γc.

2.2 Semantic Concept Prediction

After the symbolic MLP is trained, the semantic concept can be retrieved by a
similar decision rule of the standard MLP. With this in mind, the decision rule
is defined by

c∗ = arg maxc f(zk∗ , γc,k∗), where k∗ = arg maxk z, (5)

zk∗ is the value from output vector z at index k∗, γc,k∗ is the value from weighed
concept vector γc at index k∗, and function f is the power operator.

3 Parallel Symbolic MLP

As we mentioned in Section 1, our problem is defined by the association of
two different sensory input signals, which represent the same semantic concept
with an unknown coding scheme. Note that, the sensory input signals may be
or may not be the same modality. More formally, the input set is defined by
S = {(x(1),x(2), c)|x(1) ∈ X(1),x(2) ∈ X(2), c ∈ C}, where X(1) and X(2) are
the set of elements for each input, and C is the set of all semantic concepts. We
want to point out that our model does not have a pre-defined target vector via
coding-scheme.

The proposed architecture combines two symbolic MLPs in parallel, where
the information of one network is used as a target of the other network, and vice
versa. Figure 2 shows an overview of the proposed model. The training follows
a similar approach to the symbolic MLP (cf. Section 2).

Initially, two symbolic MLPs propagates forward each sensory input (x
(1)
i and

x
(2)
i where i = 1, . . . ,m) in the mini-batch of size m. Afterwards, the weighted
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Table 1. Sampling of datasets for training and testing. Each sample represents a pair
of input signals.

DATASET CONCEPT TRAIN TEST

MNIST 10 25000 4000
COIL-20 20 360 360
TVGraz 10 1942 652
Wikipedia 10 2146 720

concepts of both networks (MLP (1): γ1, . . . ,γc and MLP (2) β1, . . . ,βc) are

applied to network outputs (z
(1)
i and z

(2)
i ) in order to obtain the candidates for

the coding scheme for each network (Γ (1) and Γ (2)). As a reminder, the coding
scheme represents the relation between the semantic concepts and the symbolic
features. Finally, the generated coding scheme from one network is used as a
target for the other network in order to update the network weights, and vice
versa. This step forces both networks to learn the same coding scheme. Figure 2
illustrates the presented architecture.

4 Experimental Design

4.1 Datasets

As we mentioned, our goal was to evaluate the symbolic association of two en-
tities that represent the same semantic concept, where the coding scheme is not
pre-defined before training. To that effect, we tested our model in two scenarios:
mono-modal and multi-modal. Furthermore, we compared the presented model
against the traditional classification problem, where the coding-scheme is already
defined.

For the case of mono-modal input signals, two instances represented the same
semantic concept, e.g., two images showing different instances of the same digit.
With this in mind, we used MNIST [7] and COIL-20 [11] for generating the
training and the testing set. We want to indicate that COIL-20 does not define
a training and a testing set as MNIST does. However, we applied a common
practice, which is to use the even view angles for training and the odd view angles
for testing. For the multi-modal case, each input represents one modality of the
same concept, e.g., image or text. We tested two multi-modal datasets: Wikipedia
Articles [14] and TVGraz [6], where each multi-modal dataset represents the
semantic concept using an image and a description of the image. All datasets
were evaluated using training and testing sets of randomly sampled pairs with
the constraint that all semantic concepts follow a uniform distribution. Table 1
gives an overview of such sampling.

4.2 Features and Network Setup

For each mono-modal dataset, we used the raw pixel values as input. For multi-
modal datasets, we extracted Latent Dirichlet Allocation [3] features for text,
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Fig. 3. Example of the learning behavior for the symbolic association model at different
stages.

based on a model with 100 topics and, Bag-of-Visual-Words [16] based on
SIFT [8] using a codebook of size 1024 for the corresponding visual input. More-
over, we used NLTK1 for extracting LDA features and VLFeat2 for computing
SIFT features. These are the same features used by Pereira and Vasconcelos [12]
for the multi-modal datasets. Note that we rescaled the feature values to mean
zero and standard deviation one, in the multi-modal datasets. These steps were
not required for the mono-modal datasets.

The following parameters were used in MNIST and COIL-20 datasets for
each symbolic MLP: hidden layer was set to 40 neurons, learning rate to 0.0001,
momentum to 0.9, and learning rate for weighted concepts to 0.01. Moreover, the
size of the mini-batch was set 1000 and 360 for MNIST and COIL-20, respec-
tively. For multi-modal datasets, the following parameters were used: the size
of the hidden layer was 150 neurons, the learning rate was 0.00001, momentum
was 0.9, and the learning rate for weighted concepts was 0.01. The size of the
mini-batch was 300 samples. In both cases, the same parameters were used for
the standard MLP with a pre-defined coding scheme as upper bound.

5 Results and Discussion

In this paper, we compared the association accuracy of our model against an
MLP with a pre-defined coding scheme. The association accuracy is defined by

Association Accuracy =
1

N

N∑
i=1

h
(
z
(1)
i , z

(2)
i , gti

)
(6)

where z
(1)
i and z

(2)
i are the output classification from each network, gti is the

ground-truth label, N is the total number of elements, and the function h is

1 http://www.nltk.org/
2 http://www.vlfeat.org/
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Table 2. Association accuracy (%) of our model and the traditional approach using
MLP.

Dataset Our Model Standard MLP

MNIST 94.61± 0.24 95.02± 0.32
COIL-20 92.86± 1.65 92.94± 0.62
TVGraz 28.30± 1.45 31.50± 1.16
Wikipedia 11.82± 2.25 12.97± 1.11

defined by 1 if z
(1)
i == z

(2)
i == gti, and 0 otherwise. We can see in Table 2 that

the performance of our model was consistent with respect to the standard MLP.
This suggests that the symbolic MLPs in our model were able to learn a unified
coding scheme.

Figure 3 shows an example of several epochs and the components of our model
during training for MNIST. Initially, the association matrix between MLP (1)

and MLP (2) shows only one relation at position (0, 0). During training, the
model starts learning the underlying coding scheme represented by both weighted
concepts. The last row (epoch 50) shows the semantic prediction step. Here, the
maximum value (dark blue) of the output vector is the index ‘3’, which is asso-
ciated with the semantic concept four. This behavior is consistent between both
weighted concepts. Hence, the association matrix results in a diagonal matrix
which indicates that both networks have agreed on the same symbolic structure.

6 Conclusions

The association between abstract concepts and parallel multimodal signals con-
tributes to language development. In this work, we have shown a model that
learns the association of two parallel sensory input signals, which both signals
can or cannot be the same modality. Unlike the traditional approach where
the coding scheme is pre-defined, we associate two parallel symbolic MLPs that
learn a common coding scheme for each semantic concept. Hence, a new dimen-
sion is added to the association problem, which makes more sense because we are
including the process that abstract concepts are grounded to their sensory repre-
sentations. We have shown that our model achieved similar results to MLP with
traditional training. This holds for both mono- and multi-modal association.
Symbol Grounding is still an open problem, but reveals potential to understand
more the development in this area [10]. One limitation of our work is to learn
the association assuming a uniform distribution between the semantic concepts.
We will extend our model with different statistical distributions. Another limita-
tion is related to semantic concepts. The model requires more time to converge
when the number of semantic concepts increases. Moreover, we are interested in
exploiting robustness of deeper architectures and to learn the association when
both networks have a different number of semantic concepts.
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